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LETTER TO THE EDITOR 

Surface critical exponents for models of polymer collapse and 
adsorption: the universality of the 0 and 0’ points. 

D P Fostert, E Orlandinit and M C ’kit 
t Theoretical Physics, University of Oxford, 1 Kcbk Road, Oxford, UK 
t Dipartimento di Fmica, UniversitS di Bologna, INFN Sezionc di Balogna, B o l ~ g ~ ,  
Italy 

Received 15 Juiy 1992 

Abs(raet The surface mitical exponene are entimaled both in ordinary and in special 
regimes from exact series rxpansions of up to 28 terms for a model of the 8 point. 
They are found to be in agreement with t h w  derived for the 8‘ point, confirming the 
conjecture that the 8 and 8’ p i n e  lie in the same universality class. Some essential 
features of the phase diagram for a self-interacting, self-avoiding polymer in solution are 
also calculated to a higher degree of accuracy than previously obtained. 

Polymer adsorption on a substrate has received considerable attention not only 
because of its intrinsic merit as a problem in statistical mechanics [l], but also 
because of its relevance for technological processes such as the stabilization of 
colloidal dispersions used in paints, pharmaceuticals and foodstuffs 121. 

Such problems, in the context of statistical mechanics, can be seen as surface 
critical phenomena and are now fairly well understood when they occur alone [MI. 
Adsorption occurs at a multicritical point which corresponds to the special transition 
of magnetic systems. In d = 2 the critical exponents have been calculated exactly [5]. 

The situation is not so clear, on the other hand, when the possibility of 
collapse is introduced. A self-avoiding random walk with attractive nearest-neighbour 
interactions between nonconsecutively visited sites shows a critical 0 temperature [7] 
above which it behaves as a polymer in a good solution and below which it behaves 
like a compact globule (fractal dimension D = d). The 0 point separating these 
two regimes is again multicritical [SI and in d = 2 still constitutes a big challenge in 
statistical mechanics. 

conjectured to be in the same universality class as the usual 0 model [lo]. Using 
a version of this model in which the self-interaction was introduced by annealed 
percolation vacancies on an hexagonal lattice, bulk and ordinary surface exponents 
were either found exactly or conjectured, on the basis of Coulomb gas and conformal 
invariance methods [lo]. While the bulk exponents were in agreement with those 
reported for more traditional @-point models [ll, 121, the surface exponents were in 
clear disagreement 113,141; this gave rise to a long standing debate as to whether the 
0 and 0‘ multicritical points belong to the same universality class [15-181. 

In a recent letter Vanderzande er a1 [19] demonstrated that the surface exponents 
obtained for the 0‘ model correspond not to the ordinaly transition but to the special 

_I. An nltprnativp mnrlpl _.._”__, the oo-a!!pa 8’ made!, ~ 1 9  p q o r p i j  [g,lQ] g ~ f l  
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one. They also estimated the surface exponent, y,, at the ordinary transition for the 
0' model, using methods of exact enumeration, and found that this is in agreement 
with the best estimates for such an exponent in the 8 model+. This led them to 
confirm that the 0 and 8' points do lie in the same universality class. 

In this letter we compute the surface critical exponents both at the ordinary and, 
for the first time, special 8 points. The determination of these exponents stands as a 
crucial test of the universality class of the 0 point and we shall demonstrate that the 

In the accurate determination of the special exponents it is crucial to have a very 
precise knowledge of the location in phase space of the special 0 point. We were 
able to locate not only the special point, hut also the phase boundary between the 
extended and collapsed polymer phases to a much greater accuracy than previously 
obtained by transfer matrix techniques [14]. 

The 8-point model studied consisted of a self-avoiding walk on a square lattice 
in the infinite half-plane which was allowed to gain an energy K for every step on 
the boundary and an energy J for every pair of nearest-neighbour non-consecutively 
visited sites (see figure 1). 

o&&ed are in very ciose agreement d i h  ihme aieu;aied fur the 

I.. . .. . . . A I  

Figure 1. An iaatmpic polymer on the half-plane. Polymer interactions with the surface 
aze repmsented by a heavy solid line, and monomer-monomer interactions by a dotted 
line. 

We can define the following canonical partition functions: 

where C;;(i,j) are the number of walks of length N with i steps at the boundary 
and j nearest-neighbour interactions, n = exp(K/kT) and T = exp(J/kT). c2 = 1 
denotes that the walks have the additional restriction that the first site visited lies in 
the boundary whereas c2 = 11 indicates that not only the first site but also the last 
site visited lies in the boundary. 

of N steps starting on the surface by 

_.. we can aho define the ihemdi aver.ge of squaie of fOi .*2:& 

t For the ordinary 8' point 7, can bc obtained aactly using diagrammatic and Coulomb gas arguments. 
(Stella, private mmmunieation) 
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where Rf, ( i , j )  represents the sum of the square radius of gyration of all N-step 
walks having exactly i nearest-neighbour pairs and j adsorbed steps. The coefficients 
C&(i , j ) ,  C G ( i , j )  and Rf,  were calculated using exact enumeration of all the 
allowed walks on the square lattice consistent with self-avoidance and exclusion from 
the lower half-plane for values of N up to and including 28. 

The square average radius of gyration is expected to have a strong N dependence 
given by 

(RL)  - N2" (3) 

defining the Critical exponent v. As the Critical exponent thus defined is independent 
of the a chosen and the number of configurations for a = 11 is much smaller than 
for a = 1 we chose to calculate only the radius of gyration for polymer configurations 
with one end fixed, being more asymptotic for a given length of polymer. The surface 
criticai exponents, rl and yll, are defined by 

2% - pNN.1--' (4) 

where p is the effective connectivity constant. 
There are various methods to analyse the coefficients C, and RL to extract 

information about the exponents. In this work we used three different methods; Pad6 
analysis [20], differential approximants [21,22] and direct log-log calculation [23]. 

If we define the grand canonical partition function by 

m 

where w is the step fugacity, then we can see that 

and that it diverges when w reaches a critical value wc = l / p .  At this value the length 
of the polymer described by the grand canonical partition function also diverges and 
so this value of w corresponds to the thermodynamic limit. 

In practice we do not know Z but an approximation to it given by a partial sum 
up to some maximum polymer length. Both the methods of Pad6 analysis and that 
of differential approximants were used to investigate these truncated series and to 
provide estimates of both wc and 7". 
. The exponent U may be calculated in an analogous way by constructing the 
relevant generating function. Here, on the other hand, the quantity analogous to 
wc is clearly 1, enabling a better approximation for v than for 7, as the location of 
the pole is known exactly. 
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An alternative method for computing the exponents is by direct log-log 
calculation [U] from equations (3) and (4). A series of approximations for v and yo 
may be obtained directly 

Due to the large parity effects in polymer problems of this sort it is usual to choose 
m = 2 and from now on we shall drop the m index from the approximations to 
the exponents. lb calculate the 7, exponents we require a knowledge of p, the 
connectivity constant; alternatively we may calculate the difference between y, and 
y,, 120,221, from the series, which then removes the necessity to know p. Assuming 
that p is a constant in K while we are in one of the de-adsorbed phases then, using 
enumeration data for interacting walks in the full-plane, we can calculate also the 
quantity 7 - 7, from the equation 

where 2, is defined analogously to ZE;, but without the presence of a surface. This 
assumption seems to hold to a surprisingiy high degree even for walks in the length 
range considered 

The location of the bulk 0 point was determined from the intersections of 
successive approximations to v in the limit as N -t CO. It is expected that these 
intersections, if they exist, are natural locators of multicritical points due to the 
crossover effects associated with them. It is tempting to utilize this method even in a 
situation in which an additional interaction with the boundary is present. In this case, 
though, we find that the method becomes very imprecise and that the phase boundary 
between the collapsed and extended phases shows considerable uncertainty in T as n 
is increased. The value of U calculated from these intersections also fluctuates quite 
badly. 

As we know that the value of v should remain a constant up to and including the 
special transition, we may use the value exactly known at the ordinary 0 point [lo] 
and substitue it into equation (3) to determine the position of the phase boundary. 
This method applied to the ordinary 0 point using Pad6 approximants gives an 
improved value for T* of 

tin\ 

In spite of the uncertainty in the T direction, there is a more systematic settlement as 
the length of the walks considered increases, consistent with the assumption that the 
phase boundary between the extended and collapsed phases is a straight line at a fixed 
value of T.  The special Q point, corresponding to the end of the Q line, is detected 
around n* = 2.1. While this is not an accurate enough method for determining the 
position of the special point to enable a precise calculation of critical exponents, i t  
does provide a benchmark by which to compare the results of other methods. 

Another method to locate the special point is to calculate estimates of us as 
a function of IC at T';  if the phase boundary between the collapsed and extended 

7. = ?.%:!IO.W. <A"/ 
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phases is tNb straight then we would not expect w to have a dependence on K < IC' 

except for finite size corrections. Indeed we find that, using both methods of Pad6 
analysis and differential approximants, w remains fairly constant until some value of 
K at which stage it falls consistently as a function of K ,  indicating the presence of an 
adsorbed phase. As w is expected to remain constant as a function of n below the 
adsorption transition for all values of T ,  this method may be used to compute the 
entire adsorbed phase boundary. Both Pad6 analysis and the method of differential 
approximants were used and checked against the known location of the adsorption 
transition for T = 1 where they were in close agreement, and were consistent with 
each other ekewhere. The important factor, therefore, in the accurate determination 
of the location of the special point is a good estimate of the ordinary 0 point. Both 
methods of differential approximants and of Pad6 analysis gave the location of the 
special point as 

7. = 1.93 f 0.03 
K* = 2.15 f 0.05 
wc = 0.3113 k 0.0005 

(11) 
(12) 
(13) 

A more systematic method for the calculation of the adsorbed phase boundary, 
based on equation (9), is to look for intersections in successive approximations for 
y - y,, see figure 2, in the same spirit used above for v intersections, analysing odd 
and even N approximations separately. We found that the location of the adsorption 
for T = 1 is at K = 2.044rt0.002, with a corresponding value of yip = 1.460~0.004, 
in excellent agreement with the work of Guim and Burkhart [6], and the location of 
the special 0 point in agreement with the values quoted above. The phase diagram 
obtained using this method is shown in figure 3. The method becomes less selective 
in determining the phase boundary beyond the 0 point and therefore the collapsed- 
adsorbed phase boundary should be considered schematic. 

0 4  

0 2  

-0.6 
1 1.5 2 2.5 

K 

Plgurr 2. 7-71 versus c tor r = 1.93 shaving intersslions a1 the adsorption transition. 

At the special 0 point we may also define a surface crossover exponent, & 
defined by [24] 

( N J  - N4* (14) 
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Figure 3. The phasc diagram in the L--T plane, lhe collapsed-adsorbed phase boundary 
being schematic. 

where N,  is the number of steps in the surface, calculated for walks contributing to 
the coefficients C,$, and is given by 

Computing the residues of the logarithmic derivative with respect to w of 2' and 
2'' both at the ordinary and special points and evaluating (15) at the speciaI point 
we obtain values for the exponents given by 

y:d = 0.57 f 0.02 
y S  = -0.55 f 0.05 
7;' = 1.14 f 0.05 
7;: = 0.56 f 0.08 
b8 = 0.4 * 0.05 

These compare favourably with the exponents calculated for the 0' model, whose 
special point exponents are given exactly as y1 = 8/7, 7,' = 4/7 and q5s = 8/21 [16], 
whereas at the ordinary point they agree with previously reported results. 

Summarizing, we studied a model for self-avoiding self-interacting polymers (the 
@-point model) in presenceof an adsorbing wall and we estimated the ordinary 
and special surface critical exponents from data obtained by exact enumeration. On 
the square lattice we have been able to obtain up to 28 steps in the series, a good 
improvement with respect to, previous calculations, taking advantage of all possible 
symmetries present in the model considered. 

The resulting series were carefully analysed using various different methods SUA 
as Pad6 analysis, differential approximants and direct calculation, in order to obtain 
as precisely as possible the location, in parameter space, of the multicritical point 
corresponding to the special 0 transition, and its critical exponents. The special 
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surface 0 exponents constitute strong evidence that the 0 and 0‘ models do in fact 
belong to the same universality class. 

The results obtained and the methods used clearly indicate that the boundary 
between the extended and collapsed phases is straight, in disagreement with the 
conjecture of a temperature shift at the special 0 pint  due to surface stabilization 
of the collapsed phase [25]. 

We thank A Stella and F Sen0 for sueeesting this problem, useful discusSions and, 
along with R Dekeyser, for a careful reading of the manuscript. We would also l i e  to 
thank R Dekeyser for providing us with excellent software for series analysis and for 
his instruction in its use. DPF would also l i e  to acknowledge support from SERC. 
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